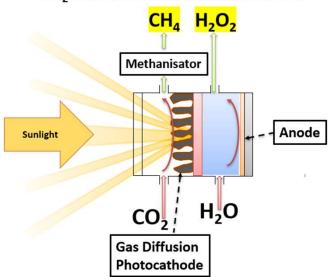


CO_2SimO - Photoelectrochemical $\underline{CO_2}$ -reduction with \underline{sim} ultaneous \underline{o} xidative raw material production

1st CO₂ WIN Conference 8-9 June 2021



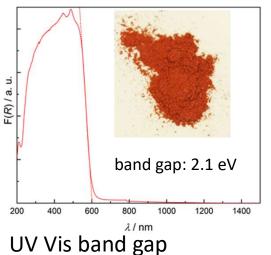
Project target CO₂SimO

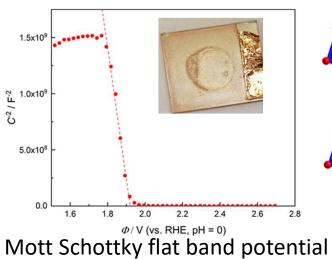
- Development of a solar driven photoelectrochemical cell (PEC) for the simultaneous
 - reduction of CO₂ to CO/CH₄ with newly developed photocatalysts using a gas diffusion electrode at the cathode and a methanisator
 - oxidation of H₂O to H₂O₂ or peroxides at the anode

CO₂SimO Photoelectrochemical Cell

CO₂SimO project team & work packages

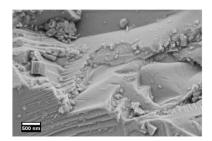
- University Bayreuth, Prof. Marschall, M. Weiß: development and characterisation of new photocatalysts (p-type Cu-Niobates/- Tantalates)
- TANIOBIS GmbH (formerly H.C. Starck Ta&Nb GmbH), Dr. Albrecht, B. Spyra, S. Barnick: Upscaling,
 process optimization, supply for photocatalysts
- DECHEMA's Research Institute, Dr. Bloh, T. Schanz: manufacturing of gas diffusion electrodes using photocatalysts; development of electrocatalysts for the anode; supply of electrodes
- Leibniz University Hanover, Prof. Bahnemann, Dr. Dillert: photochemical and spectroscopic characterization, mechanistic studies for optimization of CO₂-reduction
- neoxid GmbH, Dr. Ostermann, H. Müller, S. Puthenkalam: construction of photoelectrochemical cell based on electrodes from DECHEMA; development of methanisator, measurement of solar efficiencies
- Karlsruhe Institute of Technology, Institute for Technology Assessment and Systems Analysis, Dr. Patyk,
 L. Lazar: LCA and Cycle Costing (LCC)

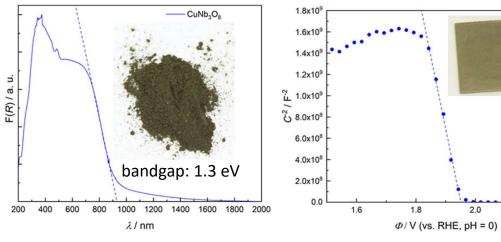


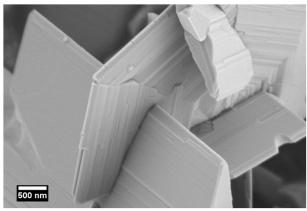

Development of photocatalysts

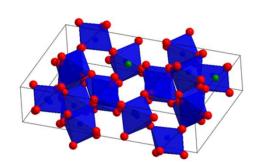
- Cu-Niobates / -Tantalates: p-type semiconductors with low bandgaps
- higher chemical stability compared to Cu₂O and CuO

CuNbO₃

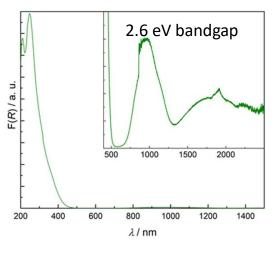

- Successful preparation of spin coating electrodes
- flat band potential 1,9V vs. RHE



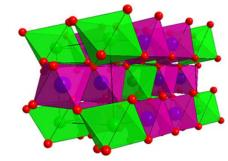


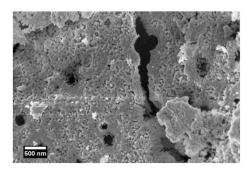

Development of photocatalysts: CuNb₃O₈

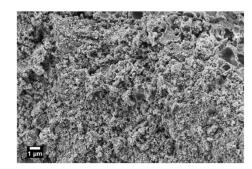
- low bandgap of 1,3eV
- Flat band potential at 1,95V

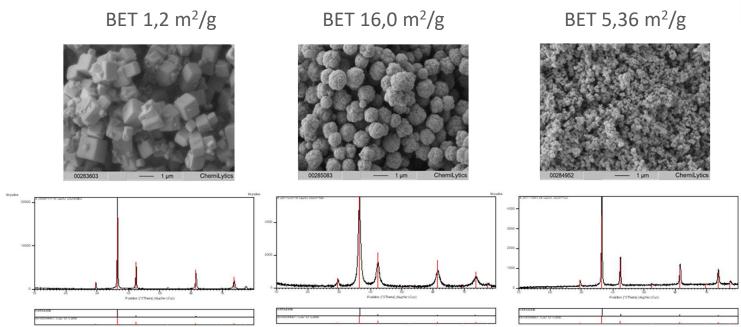


2.2


Development of photocatalysts: CuTa₂O₆

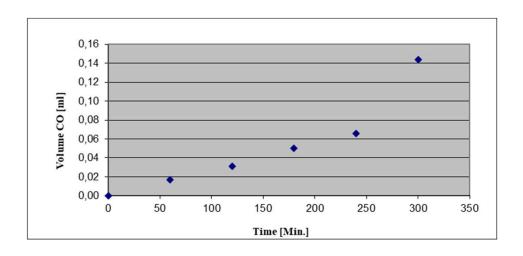


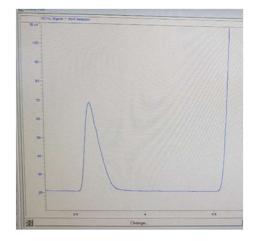

- sponge-like morphology
- nanoparticles with high surface area (42 m² g⁻¹)
- electrophoretic electrode preparation



Development of photocatalysts: Cu₂O reference materials

Precipitation with different molar ratios gives variable particle characteristics




Development of photocatalysts: Reduction to CO

- 300W Xe lamp
- electrolyte 0,5M NaHCO3
- Cu₂O reference material; appr. 1μmol/h CO

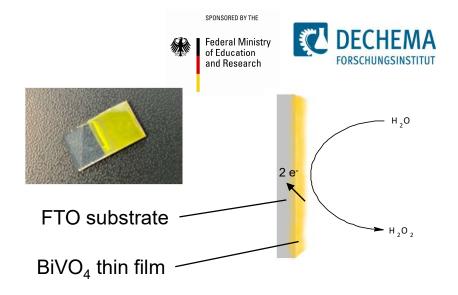
CO GC-signal

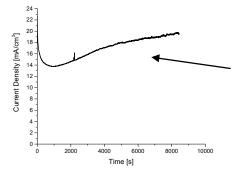
Anode reactions

- Typically, the water oxidation to molecular oxygen serves as the anode reaction in electrolysis processes
- Unfortunately, this reaction is kinetically demanding, requiring high overpotentials and expensive catalysts
- The generated product oxygen is also of only little commercial value
- The idea of this project is therefore to employ an alternative anode reaction that generates a more valuable product

Product	Chemica I formula	Molar mass [g/mol]	Value [€/t]	Value [cent/mol]	n	Value per transferred electron [cent]
Methane	CH ₄	16	400	0,64	8	0,08
Oxygen	O_2	32	30	0,10	4	0,02
Chlorine	Cl_2	71	80	0,57	2	0,28
Sulfur	S	32	200	0,64	2	0,32
Hydrogen peroxide	H ₂ O ₂	34	700	2,38	2	1,19

Peroxides as product of the anode reaction


- Peroxides such as H₂O₂ but also other technical peroxides such as peracetic acid have a
 wide-spread use in a variety of industries as chemical reagent, bleach or disinfectant but
 their storage and transportation is often difficult making on-site production particularly
 interesting
- This diverse and decentralized demand matches well with a decentralized generation using solar light
- Economic value is much higher than traditional anode products such as oxygen and even higher than many products of the reduction reaction (such as methane)
- The resulting process may therefore become economically feasible far earlier than processes employing anodic oxygen production

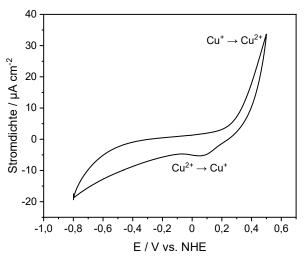


Anodic peroxide generation

- The electrochemical oxidation of water can produce different products depending on the potential and the selectivity of the electrode material
- Some metal oxides such as BiVO₄ are able to selectively oxidize water to hydrogen peroxide
- Depending on the electrolyte, it may be possible to directly synthesize other technical peroxides such as peracetic acid

$$2 H_2O \longrightarrow H_2O_2 + 2 H^+ + 2 e^ E^\circ = 1.76 V$$

 $2 H_2O \longrightarrow O_2 + 4 H^+ + 4 e^ E^\circ = 1.23 V$
 $H_2O \longrightarrow OH^\bullet + H^+ + e^ E^\circ = 2.38 V$

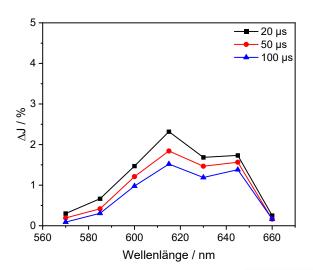


Exemplary chronoamperometric experiment at 2.8 V vs. Ag/AgCl in 2M KHCO₃ electrolyte.

-> 1.9 mM H₂O₂ generated

Photoelectrochemical CO₂ reduction: Cyclic voltammetric potentials for Cu₂O

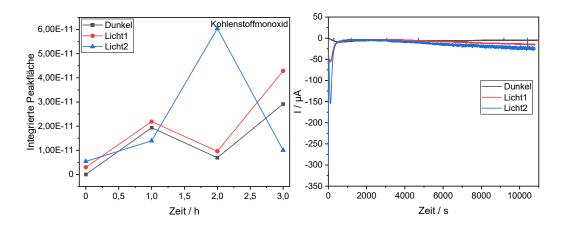
- Oxidation of Cu₂O to CuO at anodic potentials
- Appropriate potential range for photoelectrochemical CO2-reduction < 0 V vs. NHE (-0,2 V vs. Ag/AgCl)


- Working electrode: Cu₂O on FTO
- Counter electrode: Pt, Reference: Ag/AgCl
- Electrolyte: 0,5 M NaHCO₃ saturated with CO₂

Laser flash photolysis

SPONSORED BY THE

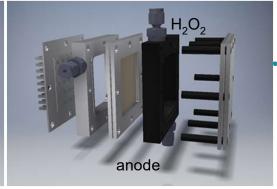
- Excitation of Cu₂O with 355 nm leads to photogenerated charge carriers
- Peak @ 615 nm possibly due to intermediate Cu⁰ formation


- Cu₂O-Pulver in N₂ atmosphere
- Excitation: 3 mJ 355 nm

Photoelectrochemical CO₂ reduction products

 mass spectrometry of Cu₂O reduction products under simulated sunlight in photoelectrochemical reactor

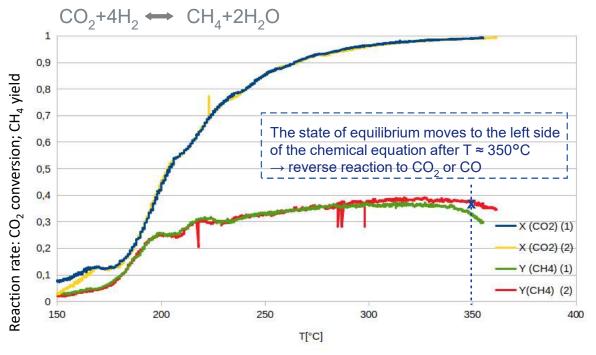
Dark coulored electrode after measurement due to Cu⁰


- Formation of CO (and formic acid) detected
- Further experiments ongoing with other applied potentials
 - Working electrode: electrochemically dep. Cu₂O on FTO
 - Counter electrode: Pt, Reference: Ag/AgCl
 - Electrolyte: 0,5 M NaHCO₃ saturated with CO₃
 - Potential: -0,5 V vs. Ag/AgCl (-0,3 V vs. NHE)

Construction of photoelectrochemical cell

Prototype reaction cell for CO₂SimO

Analyzed light sources:


- UV LED panel: 365nm; 3,7W
- xenon short arc lamp, total 300W; <390nm; 6,6W
- LED panel 6000k; 400–750nm, 25W

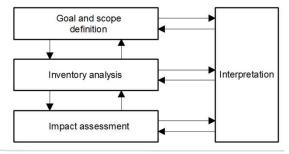
Development of methanisator

Post-cell catalysis with fixed bed reactor: CO₂ methanisation

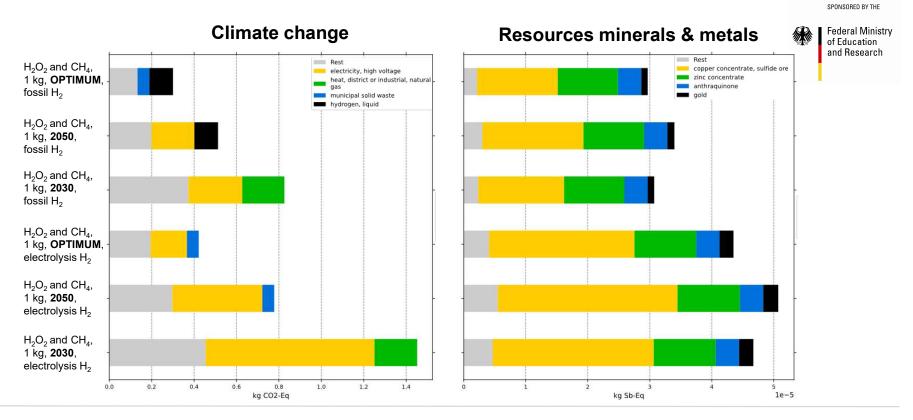
Fixed bed reactor with Ni/Al₂O₃ catalyst:

- Highest CO₂ conversion:
 T > 300°C
- Highest CH4 yield: 300°C < T < 350°C
- Highest CH₄ selectivity T ≈ 180°C

Sustainability Assessment: Goal & Scope


LCA & LCC: Goal definition, Functional unit

- Environmental and economic performance of hydrogen peroxide + methane in the future (2030, 2050, OPTIMUM) with a solar-driven photoelectrochemical cell in Germany / EU, by oxidising water and reducing CO₂ to CO and CH₄
- Conventional production
 - \blacksquare H₂O₂ anthraquinone process
 - CH₄ from natural gas
- Support of micro-level decision-making, chosen method → attributional LCA
- Assessment of emerging technologies in future → ex-ante / prospective LCA / LCC based on lab data, process simulations, scalings and scenarios
- Functional unit and reference flow
 - I. $y kg H_2O_2 + z kg CH_4$
 - II. 1 kg CO_2



Norm LCA (DIN EN ISO 14040/44)

Sustainability Assessment: Start of LCA Model Development Reference product system, 0.89 kg H₂O₂ and 0.11 kg CH₄: LCIA

17

Summary

- Several Cu Niobates / Tantalates with promising band positions were prepared, characterisation ongoing
- CO₂ reduction to CO could be proven with Cu₂O reference materials
- Stable H₂O₂ generation with BiVO4 electrodes
- Construction of 1st prototype for photoelectrochemical cell finished, several catalysts for methanisation reaction tested
- LCA: environmental sustainibility assessment of the reference product systems done

Next steps

- Improvement of BET surface areas and measurement of CO₂ reduction for Cu Niobates / Tantalates
- Characterisation of oxidation products at anode
- Preparation of gas diffusion electrode for photocathode
- Optimization of photoelectrochemical cell and methanisator
- LCA: Data exchange of energy in the whole background database for all activities for the
 prospective technology assessment

inspiring metal evolution